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Abstract 

While a number of research systems have demonstrated 
the potential value of program transformations, very few of 
these systems have made it into practice. The core technol-
ogy for such systems is well understood; what remains is 
integration and more importantly, the problem of handling 
the scale of the applications to be processed. 

This paper describes DMS, a practical, commercial 
program analysis and transformation system, and sketches 
a variety of tasks to which it has been applied, from re-
documenting to large-scale system migration. Its success 
derives partly from a vision of design maintenance and the 
construction of infrastructure that appears necessary to 
support that vision. DMS handles program scale by careful 
space management, computational scale via parallelism 
and knowledge acquisition scale via domains. 

1. Program transformations for software evo-
lution: Transitioning theory into practice 
Source-to-source program transformations were origi-

nally conceived as a method of program generation in the 
1970s [5], and the technology has been developing since 
[11, 12]. The idea that transformations could be used for 
software maintenance and evolution by changing a specifi-
cation and re-synthesizing was suggested in the early 80s 
[4]. Porting software and carrying out changes were sug-
gested and demonstrated in the late 80s [3, 10]. Theory 
about how to modify programs transformationally using 
previously captured design information was suggested in 
1990 [6]. But program transformation as a serious tool for 
software evolution is largely unrealized in practice. 

Mechanical refactoring [13] was proposed in 1990 as a 
technique for restructuring programs and is recently popu-
larized [9] as a methodology with suggestions for tool sup-
port. Tools for refactoring SmallTalk [14] and Java have 
started to appear, and some experimental work has been 
done in refactoring C++ [15]. The better Java tools [16, 17] 
do some sophisticated refactorings such as ExtractMethod; 
others in the market require some manual validation of the 
steps. The most advanced refactoring tool offers a fixed set 
of 25 transformations selectable from a menu, but these 
tools are based on conventional, procedural compiler tech-
nology solutions, rather than transformations. 

Semantic Designs is attempting to make general pro-
gram transformation systems into a practical tool for soft-

ware analysis, enhancement, and translation based on a 
theory of change [7]. The DMS1 Software Reengineering 
Toolkit is a first practical step towards this vision.  

Other papers focus on technology and theory of indi-
vidual mechanisms.  We claim the principal issue behind 
such systems is not technology, but scale.  We have strived 
to make DMS scalable as a key to long-term success. (Al-
though [11] is now available commercially, it failed in its 
original industrial research context partly due to its inability 
to handle programs of even 10K SLOC).  The principal 
contribution of this paper is showing the set of integrated 
mechanisms needed to produce a scalable, practical tool. 

This paper sketches the DMS vision, describes the scale 
problems, describes the DMS mechanisms and how they 
support scale, and examines a number of applications of 
DMS.  This is a lot of material and we are necessarily brief. 

2. Application Scale as a barrier to tools 
Serious progress for practical tool usage requires facing 

the problem of real systems, scale: 
• Sheer Size: Real systems of interest are enormous. 

Many organizations have single applications with 
250K SLOC or more, and 40-million line systems 
are easily found (e.g., Microsoft’s Windows OS). 

• Multiple Languages: Large software systems typi-
cally have multiple languages, including conven-
tional (C, Java, COBOL), scripting (JCL, sh, TCL), 
domain-specific (SQL, XML, CICS) and customer-
defined languages. 

• Information spread: Understanding the information 
flows across the entire system is necessary to make 
serious changes, whether these flows are interproce-
dural, interprocess, interlingual, or distributed. 

• Design Information Volume:  A huge system in es-
sence has a huge specification, and a vast design re-
lationship between the specification and the code. 
Attempts to change such systems must have access 
to the specifications, understand why the system is 
structured the way it is, and have access to a large 
repository of implementation techniques in the prob-
lem domain so that new demands can be met. 

• Configurations: a large system may exist at any 
moment in a large number of variations, due to dif-
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fering customer needs, execution environments, and 
decades-long software system lifetimes. 

• Teams:  Large numbers of engineers are simultane-
ously engaged in enhancing these systems. Avoiding 
interactions among activities is a must for progress. 

Many tools have been proposed and implemented to 
take on various aspects of automating program evolution 
(structure editors, code restructures, source code optimiz-
ers, generators). But by and large, these tools at best solve 
point problems in a single language for at best modest size. 

Failure to address scale issues will ultimately doom any 
automated tool for maintenance, by making it irrelevant to 
the very systems for which it can provide the most eco-
nomic value. To build support tools that have a chance of 
operating on large systems, one must make continual in-
vestments in scalable tool infrastructure or risk forever re-
peating the construction of inadequate infrastructure. 

3. The DMS vision: Design Maintenance 
DMS is a vision of how software evolution can be man-

aged with automated tools, based on these ideas: 
1. Software system design can be captured as a formal 

artifact explaining what, how and why.  
2. Desired changes to software in specification, per-

formance, and implementation technology can be 
explicitly captured as formal maintenance deltas. 

3. Maintenance deltas can be used to incrementally 
and mechanically update the design, realizing the 
desired change while keeping the design current.  

First, the fundamental artifact to capture and modify is 
the design information that rationalizes its implementation 
given its specification [6]. The implementation is an easily 
extracted part of the design. Such a design must encode: 

• What: A specification, of both function and per-
formance. Performance addresses all nonfunctional 
properties of the program. Covering all these issues 
requires multiple specifications. 

• How 1: An implementation (source code) in the tar-
get languages (typically more than one) that the sys-
tem has. While this may appear extreme, design in-
formation occurs at all levels of abstraction; this is 
simply the lowest; this is justified in [6]. 

• How 2: A derivation of the implementation from the 
specification, showing how each functionality speci-
fication fragment is correctly realized by code frag-
ments using some implementation technology. 

• Why: A rationale for each derivation step choice (out 
of many possible choices) that demonstrates that the 
actual choice meets the performance requirements. 

This design information cannot be practically regener-
ated on demand, nor can the present chaos of hiding it in 
large, constantly changing team of software engineers ever 
be economically practical. Designs are not small; deriva-
tions of 10000-line programs can require hundreds of thou-

sands of decisions (number of transformations applied). 
Second, the vision suggests encoding of intent to 

change a system as maintenance deltas, covering changes 
to functionality, performance, and implementation. 

 Third, the fundamental value of the vision is to use the 
maintenance deltas to drive incremental changes into the 
design, achieving both modest change costs and reliable 
change integration. This can be accomplished by using al-
gebraic distributive properties of the derivation process and 
design product with respect to the deltas. A complete set of 
delta propagation algorithms is detailed in [6]. 

4. The DMS implementation: scalable 
program transformation infrastructure 
DMS is also a running implementation, which is in-

tended to be a scalable stepping-stone to the ultimate vi-
sion. The scope of the DMS vision is admittedly quite big, 
and it is difficult to build this full vision in a short time. 

One must start somewhere. A significant portion of the 
design information is the derivation of the code from the 
specification. The balance is the rationale as to why a par-
ticular derivation was chosen. Thus it is necessary to be 
able to capture the derivation, and a key step towards doing 
that is to be able to apply transformations to specifications. 

The present version of DMS, the DMS Software Reen-
gineering Toolkit, has been under development for 8 years, 
and is capable of defining multiple, arbitrary specification 
and implementation languages (domains [12]), applying 
analyses and both procedurally implemented and source-to-
source transformations to source code written in any 
combination of defined domains (Figure 1). This meets one 
of the criteria: being able to handle multiple languages in 
real systems, and applying transformations. 

The DMS Software Reengineering Toolkit can be con-
sidered as extremely generalized compiler technology, and 
presently includes the following tightly integrated facilities: 

• A hypergraph foundation for capturing program rep-
resentations (e.g., abstract syntax trees (ASTs), flow 
graphs, etc.) in a form convenient for processing. 

• Complete interfaces for procedurally manipulating 
general hypergraphs and ASTs. 

• A means for defining language syntax and deriving 
context-free parsers and prettyprinters for arbitrary 
context free languages in order to convert specifica-
tion and language instances to and from appropriate 
internal hypergraph representations. 

• Support for defining and updating arbitrary name-
spaces with arbitrary scoping rules, containing 
name/type/location information. 

• An attribute evaluation system for encoding arbitrary 
analyses over ASTs. 

• An AST-to-AST rewriting engine that understands 
algebraic properties such as commutativity and asso-
ciativity. (A hypergraph rewrite engine is planned). 



  

  

 

 

• The ability to specify and apply source-to-source 
program transformations based on language syntax. 
Such transforms can operate within a language (op-
timizations) or across language boundaries (refine-
ments). 

We are presently implementing a general scheme for 
capturing arbitrary control flow graphs (including excep-
tions, continuations, parallelism and asynchrony) and carry-
ing out data-flow analyses across such graphs. 

Our goal is to build scalable infrastructure. One aspect 
is support for computational scale, which is addressed by 
implementing DMS in a parallel programming language, 
PARLANSE enabling DMS to run on commodity x86 
symmetric-multiprocessing workstations. 

DMS as presently constituted has been used for a vari-
ety of large-scale commercial activities, including porting, 
domain-specific code generation and the construction of a 
variety of “conventional”  software engineering tools. 

4.1. PARLANSE 2 
A fundamental problem is the sheer size of large soft-

ware systems. DMS is capable of reading literally tens of 
thousands of source files into a single session to enable 
analysis across entire systems. Our goal is to handle 10 
                                                           
2 PARLANSE is a trademark of Semantic Designs. 

million lines of code in a typical 4 Gb address space; to 
date, we have processed 2.5 million Java lines in 2Gb. 

Size translates into computational costs: 1 microsecond 
per source line means 2.5 seconds of CPU to do anything to 
2.5 million lines. To help alleviate that problem, DMS is 
implemented in a fine-grain parallel language, PARLANSE 
[1]. PARLANSE is designed support irregular parallelism 
for symbolic manipulation, induced by large irregular data 
structures such as million-line ASTs, on shared memory 
multi-processors. 

PARLANSE is the programming language for coding 
DMS, and for writing DMS application “scripts”  which 
sequence complex series of actions often required to carry 
out a sophisticated program analysis or transformation. 
REFINE [22] is similar in intent but not parallel, but the 
XT composable-tool model [19] is completely different.  

PARLANSE is modeled after C, but with LISP-like 
syntax.  It is statically typed, including scalar data types 
(Booleans, Unicode characters, integers, floats, pointers), 
arrays, structures, functions, etc. This choice was made on 
the grounds that when one cannot go parallel, one should 
be able to execute very efficient serial code, and we wanted 
to be able to take advantage of the vast experience available 
in compiling C-like languages efficiently. The present 
PARLANSE compiler is stand-alone and rather ad hoc due 
to the need for PARLANSE to exist before any of DMS 
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could be built. It does not generate particularly good code, 
but our plan is to replace it with a DMS-based PARLANSE 
compiler, taking advantage of DMS’s growing strength to 
analyze and optimize large, complex systems, and the abil-
ity to specify machine-code generators based on instruction 
set specifications, an approach which is widely used by the 
compiler community. 

To support software engineering of the big system DMS 
was expected to be, PARLANSE provides modules, excep-
tions and downward function closures. Pointer type casts 
are illegal, which makes PARLANSE strongly typed. Stor-
age management facilities include classic new and free 
with non-classic nestable storage pools, which enable the 
effect of purpose-specific garbage collection. PARLANSE 
also offers cheap resizable dynamic arrays and (Unicode) 
strings. A debug-compile assertion checking facility called 
trust allows an engineer to state his expectations of run-
time state which are checked during debugging but not for 
production compiles. 

PARLANSE parallelism is based on computational 
grains, which intend to convey the idea of relatively small 
chunks of code that can execute in parallel. The fundamen-
tal idea is that the PARLANSE programmer specifies ex-
plicitly all the parallelism available in his application down 
to “very fine grain” ; the compiler and runtime system 
choose which parts of the parallelism are realized, some-
times by not generating parallel code, sometimes by throt-
tling parallelism to prevent the runtime system from drown-
ing in lists of available work. This relieves the programmer 
from the burden of managing the underlying architecture. 

Parallelism is delivered in a number of flavors. Dy-
namic parallelism delivers classic parallelism such as 
spawn (fork with a function applied to a value) and wait 
for grain completion. Classic semaphores and non-classic 
futures (waiting for a cell to acquire an initial value) pro-
vide basic synchronization. Because grains may be used to 
compute speculatively, they may be aborted; grains may 
catch asynchronous exceptions to clean up before expiring. 

Grains may be organized into dynamic self-organizing 
teams. This allows a conceptual computation over a large 
irregular structure (such as a tree) to be organized as a par-
allel team that can recruit as many grains as needed based 
on size and structure (often, a recursive call will be imple-
mented by recruit). One can wait on team completion, and 
abort teams.  Exceptions thrown by team members abort 
other team members; by catching abort exceptions a team 
can clean up before all members expire. No other parallel 
programming language known to us offers exception han-
dling cleanly integrated with parallelism. 

Static teams declare a fixed number of grains with 
known styles of interaction. Potential-parallelism (denoted 
||) declares a set of grains, which have no time-ordering 
relation. Concurrency (|!) declares that the member grains 
must overlap in time, presumably to communicate with one 

another. Partial-orders (;|) state the partial-order sequencing 
constraints across a set of grains. Figure 2 describes such a 
partial order written in PARLANSE consisting of four la-
beled actions and declarations for execution orderings stat-
ing that the first action has to be executed before (<<) the 
second and fourth ones and the fourth one has to be exe-
cuted after (>>) the third one. The PARLANSE compiler 
provides special support and optimizations for these con-
structs to minimize and inline context-switching overhead. 

Much of DMS’s parallelism can be explicitly specified 
based on the application of interest. However, a consider-
able part of DMS’s parallelism is automatically extracted 
from DMS attribute evaluators, which are compiled into 
several-hundred-thousand-line partial-order parallelism 
PARLANSE codes. Here, DMS is acting as a code genera-
tor to produce significant parts of its own infrastructure. 
We believe these to be some of the largest parallel pro-
grams on the planet, and they are extremely reliable. 

DMS presently comprises about 400K SLOC of hand-
written PARLANSE code. Several million additional lines 
of PARLANSE code have been produced by various DMS 
parts, notably the attribute evaluator generator. 

SMP workstations run DMS with significant speedups, 
but we have not done formal performance studies. There is 
also still significant room for tuning. 

PARLANSE is unique. We know of no other program 
transformation system built using a parallel language, let 
alone one that addresses irregular computation. No other 
parallel programming language integrates exception han-
dling in as robust a way. It has proven its utility in building 
a system as complex as DMS. 

4.2. Hypergraphs and ASTs 
The foundations of DMS enables it to represent arbi-

trary (hyper)graphs, composed of typed nodes carrying 
literal values (Boolean, character, integer, float or string), 
and having numbered ports that can represent singleton, 
sets, or sequences of bi-directional connections to other 
ports on “neighboring”  nodes. Each domain defines its own 
set of node types, and each node type defines a fixed set of 
ports having designated connectivity. This representation 
has been chosen to enable capture of arbitrary graph-like 
languages, while being implementable in single cache lines, 
providing for both compactness, to enable large representa-
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Figure 2: Partial order parallelism 



  

  

 

 

tions to be captured, and speed of access by avoiding mul-
tiple memory fetches once a node becomes of interest, 
which is important to minimize the memory traffic gener-
ated by a parallel graph visit. 

At present, DMS provides good support for Abstract 
Syntax Trees, but it is designed to handle arbitrary graph 
representations. It is quite easy to encode ASTs on top of 
hypergraphs: Port 1 is canonically treated as the connection 
to a (set of) parent node(s) “child”  ports. Nodes represent-
ing leaf literal values have type specific to the type of the 
literal, with only a parent port and an associated literal 
value. For fixed-arity nodes such as “Divide” , (child) ports 
2 and 3 provide singleton connections to corresponding 
numerator and denominator subtrees 

AST nodes in DMS almost always represent grammar 
rules and terminal tokens, and so ASTs are typically gram-
mar derivation trees. A number of techniques are used to 
encode such trees more densely to aid space scaling; be-
cause memory accesses are become progressively more 
costly as processor clock rates rise, so this also aids compu-
tational performance. Valueless terminal tokens in the 
grammar always have node types defined, but may in fact 
be eliminated from the representations; this often saves a 
factor of 2 or 3 in space. Long chains of unary productions 
can be independently eliminated, saving another factor of 2 
to 4 due to the deep operator precedence hierarchy in most 
modern programming and specification languages. Lists are 
represented by nodes whose port 2 is a sequence of connec-
tions to parent ports of subtrees. Ambiguous trees carry a 
literal designating the token represented, and have a port 
with a set of children representing alternative trees. In fact, 
DMS operates on Abstract Syntax DAGs where subtrees 
can be shared among a forest of trees in a single graph. 
This often allows ambiguous trees to be stored with maxi-
mal sharing to save space. Composing these savings usu-
ally results in a significant size reduction of ASTs.  

The fact that ASTs are just a special case of a graph 
makes will make it straightforward to decorate arbitrary 
graphs with expression trees. 

One can manipulate hypergraph nodes procedurally via 
a PARLANSE Graph module, which provides a parallel-
safe way to create and destroy nodes, as well as connect 
and disconnect their ports, and to read and write arbitrary 
graphs as text files. A complete AST Interface module for 
manipulating ASTs is provided, including node creation 
and destruction, parent/child navigation, connection and 
disconnection, and operations on complete trees (copy, 
traverse-with-visitor, destroy, print-as-S-expression). 

It is often useful to associate arbitrary structures with 
graph nodes, including other graph nodes. A standard, par-
allel-safe high-performance generic hash table provides this 
facility. Comments and control-flow nodes are associated 
with AST graph nodes this way. 

4.3. Parsing 
An extremely practical technology point is DMS’s abil-

ity to explicitly define languages, parse programs in those 
languages, and build ASTs for these programs using a 
methodology applicable to a full range of specification,  
legacy and modern programming languages, following the 
Draco domain model [12]. Being able to define sets of such 
languages quickly and reliably is a necessary scaling prop-
erty if DMS is to be used to manage large, complex appli-
cation systems. Given a domain definition, DMS is able to 
directly read and apply source-to-source transformations in 
that language. 

A DMS parser may be implemented as an arbitrary pro-
cedure that produces a hypergraph (this will eventually 
provide DMS with parsers for graph and visual languages), 
but all present DMS parsers are implemented using built-in 
support for integrated lexing, preprocessing, and parsing. 

Lexers are defined using a LEX-like scheme for de-
scribing sets of regular expressions for whitespace, com-
ments, keywords and value-carrying tokens. Regular ex-
pressions include the usual character-sets, Kleene star and 
plus, and RE union, and the unusual RE intersection and 
complement. The lexers directly support Unicode but input 
stream managers can convert from other standard text rep-
resentations, notably 7 bit ASCII and “European”  ASCII 
ISO-8859-1. Lexical macros allow the definition of named 
regular expressions, and a large library of Unicode-based 
character subsets and standard token definitions are sup-
plied as conveniences.  

In order to simplify later computations, procedural val-
ues attached to each lexeme definition convert values asso-
ciated with lexemes (integers, floats, characters, strings) to 
native PARLANSE representations, capturing lexeme 
shapes (“ formats” ) in the process. Formats describe the 
syntactic variant of the lexeme, and capture such informa-
tion as number radix, string-quote-style, keyword case, 
trailing zero count etc. A powerful conversion library sup-
ports conversion to the native representation. 

The lexer produces a string of lexemes to be preproc-
essed and then parsed. Comments are treated specially, and 
sequences of them are attached as pre-comments or post-
comments to the nearest lexeme, depending on domain-
definer provided heuristics.  

The lexer provides facilities for opening and stacking 
multiple source streams, providing the basis for preproces-
sor include files. All lexemes are stamped with source posi-
tion information including source file, line and column 
number, enabling accurate reporting of locations for errors 
or analysis results. Many languages practically require dif-
ferent lexing modes in different parts of the source pro-
gram, e.g. a main mode for GNU C and another mode for 
processing embedded assembly language instructions. 
DMS lexers support the definition of multiple named lexing 
modes, with procedural actions defining when lexical mode 



  

  

 

 

switches occur. These modes are named so they can be 
referenced by source-to-source transformation rules. Each 
mode provides a set of token definitions, which are com-
piled by DMS into a high-performance finite-state-lexer. 

Preprocessing is handled either by procedural attach-
ments to preprocessor token definitions (such as text-string 
macro definitions as in JOVIAL) or by a separate language-
specific preprocessor placed between the lexer and the 
parser (for C, C++ and COBOL, for which DMS has full 
preprocessing ability). Generally the strategy is to avoid 
expanding preprocessor directives, on the grounds that 
DMS should process “what the programmer sees” , not what 
is seen by the raw compiler. To this end, the preprocessors 
often carry out partial preprocessing by collecting macro 
definitions etc, used to drive later preprocessing/parsing, 
but do not actually expand macros or evaluate conditionals. 
Instead, these tokens are usually passed on to the parser 
unchanged. Passing preprocessor directives to the parser 
require the language grammar be decorated with preproces-
sor syntax at statistically common places; at points where 
the grammar will not accept a preprocessor token, the par-
tial preprocessor punts and expands that directive. In prac-
tice, this means source programs must be occasionally 
modified to move a badly placed preprocessor directive to a 
more convenient location. While this kind of scheme seems 
unwieldy, a typical DMS user with 1200 C++ files can 
make the necessary changes to his sources in about a day 
without breaking them. We are working on a more general 
scheme that will allow preprocessor directives anywhere. 

DMS based parsers take streams of lexemes and parse 
them according to very simple context-free grammars. All 
grammar rules are of the form: 

LHS = RHS1 RHS2 … RHSn ; semanticaction 
where semanticaction is optional, and is the name of a se-
mantic predicate whose failure disallows a particular LHS 
expansion. We find the absence of the usual grammar sugar 
such as Kleene star/plus, alternatives and grouping to be 
only a small inconvenience; and those constructs would 
make defining attribute computations more confusing. 

We have repeatedly encountered complaints from other 
researchers about how difficult languages (such as C++) are 
to parse, and seem to continually find language-processing 
projects whose goals are lofty but are mired in the mud of 
achieving a robust parser, thus resulting only in toy tools. 
Much of this problem comes from choosing parser genera-
tors, such as YACC,  “ found under the lamppost”  rather 
than using very strong technology. DMS uses GLR [21] 
parsing technology, which generalizes LR parsing by effi-
ciently trying all possible parses in parallel, providing the 
ability to do full context-free parsing; this also allows the 
detection and easy capture of ambiguities. In contrast, 
LALR and other parsing technologies must commit to a 
particular parse without knowing what is coming next, and 
often then make the wrong commitment, because extremely 

few real languages (esp. C++) are in the category of lan-
guages parseable by these widely available tools. Conse-
quently all kinds of heuristics and various parser hacks that 
tangle symbol type collection and lookup into parsing are 
reinvented to help alleviate these problems. We have found 
with GLR parsing that we can use a close derivative of the 
language reference grammar with remarkably modest ef-
fort, with the benefit of being able to cleanly separate pars-
ing from non context-free issues such as names and lexical 
scoping rules. As a consequence, DMS is available with 
production grammars for an astonishing variety of pro-
gramming languages, including COBOL, C, C++, Java, 
SQL, JavaScript, PHP, etc., complete with lexical peccadil-
loes (weird grammatical syntax, include files, macros, con-
ditionals and dialects), as well as specification languages 
such as Spectrum, XML, Z, etc. 

The DMS parser, which is derived automatically from 
the grammar, automatically produces a parse tree removing 
unnecessary tokens and unit productions to produce a com-
pact “abstract”  syntax tree. Multiple parses for the same 
phrase are captured under special ambiguity nodes, which 
share subtrees to save space. Such ambiguities are usually 
removed by a symbol-table construction step that follows 
parsing. However, the parsing process can use domain-
engineer-provided semantic constraints on reductions, and 
these are occasionally used to eliminate ambiguities while 
parsing. This works extremely well for FORTRAN, in 
which line numbers on statements can disambiguate loop 
nesting/overlap, thus allowing the parser to produce ASTs 
with proper loop nesting, as it parses. The parser also cap-
tures lexeme values and comments and attaches them to the 
appropriate terminals so that a resulting parse tree is a 
complete model of the source text. This enables later re-
generation of full text after transformation is complete. 

 The XT project [19] also seems to have discovered the 
utility of GLR parsing, and appears to have similar success 
in parsing a variety of languages, although we have not 
seem claims of full parsers for production languages. How-
ever, XT goes to extremes by parsing the source text at the 
character level; they do not use a lexer. This is conceptually 
cleaner than DMS’s traditional lexer/parser approach, but 
we do not believe it is as efficient in practice. It also leaves 
the difficult problem of handling comments; they must be 
produced as part of the derivation tree in a character-level 
parsing regime, yet they can occur anywhere without pro-
viding any semantics. Consequently manipulating such a 
character-oriented tree is more difficult. In practice, what 
XT tools appear to do is to process the derivation parse tree 
through an abstract syntax tree builder, which provides the 
opportunity to move the comments to somewhere more 
convenient. But this simply brings the comment problem 
back; going to character-level parsing doesn’ t fix it. 



  

  

 

 

4.4. Attribute evaluation 
Change requires knowing where to change, which in 

turn requires analyses to be performed. DMS provides 
analysis support in the form of attribute grammars defined 
over the domain syntax, for arbitrary subtrees. This allows 
encoding of analyses, which can be relatively easily ex-
pressed in terms of the language structure using inherited 
and synthesized attributes and value-combining operations. 
Examples of information computed easily this way include 
metrics, set-of-operands, control flow, symbol tables, etc. 
Analysis computations not fitting this model can be imple-
mented as arbitrary PARLANSE code. 

Traditional attribute evaluators are purely functional; 
DMS attribute evaluators also allow side effects (proce-
durally specified in PARLANSE), which are extremely 
convenient for updating large analysis results rather than 
passing them around. Two common “ large”  values are sets 
(implemented as PARLANSE dynamic arrays) and symbol 
tables for complete software systems.  

Attribute computations are compiled into PARLANSE 
code, one procedure per grammar rule. Because the attrib-
ute evaluation information flow within a rule is essentially 
functional (and side effects are explicitly stated), it is rela-
tively easy to compute partial orders over the computations 
defined in each attribute rule. Consequently each rules’  
attribute computation is mapped straightforwardly onto a 
PARLANSE partial order. Thus attribute evaluation in 
DMS is irregularly parallel, driven exactly by the shape of 
the desired computation. We believe that the attribute 
evaluators we produce are likely the largest parallel pro-
grams in existence, and they are reliable because they are 
synthesized. While there have been a number of parallel 
attribute evaluators implemented experimentally, we think 
DMS’s is one of the first to be practical on a large scale. 

Each attribute evaluator is made available as a PAR-
LANSE function so it can be called by other arbitrary pro-
cedures, including other attribute evaluators. 

We are working on generic infrastructure for informa-
tion flow analyses based on control flow analysis. We pres-
ently extract control flow graphs by attribute evaluation. 

4.5. Symbol table support 
Only very simple notational systems are context free. 

Systems used for practical purposes (C++, Verilog, 
XML…) all have rules for naming entities and complex 
scoping systems to manage the huge namespaces that occur 
in practice. One cannot realistically implement transforms 
on such notational systems without providing a means for 
managing the discovery of name definitions and name 
lookups: symbol tables.  

DMS provides a general symbol table management sub-
system with facilities for defining and recording name/type 
information associations in symbol spaces, where names 
are arbitrary Unicode strings and types are arbitrary PAR-

LANSE structures (including possibly references to other 
symbol spaces) defined by hand per domain to represent 
the types in that domain. Symbol spaces are implemented 
as a scalable, parallel-safe-access hash table to enable par-
allel PARLANSE computations to access and update them 
reliably. 

Symbol spaces have parent-links with associated inte-
gers (Figure 3). A symbol table is a set of symbol spaces 
with established parent arcs. A standard lexical lookup on a 
symbol searches from a designated starting space, through 
parent spaces in integral order until the symbol is found in 
some space or all paths to parents are exhausted. Multiple 
parents with integer priorities make it easy to implement 
features like multiple-inheritance. The notion of “match”  is 
defined by per-domain PARLANSE Boolean functions 
provided as parameters to the search, enabling straightfor-
ward lookups, even with “overloading”  scoping rules. 

Sometimes the search process must be redirected ac-
cording to the symbol space from which it emanates. Dif-
ferent types of symbol spaces accomplish this, including 
one, which allows an arbitrary action in the middle of a 
search. This enables the implementation of Java rules that 
search the file system if a name cannot be found in a par-
ticular scope.  

A symbol table instance is commonly built by an attrib-
ute evaluator, with symbol space references flowing around 
the tree, and side effects inserting new entries in the symbol 
spaces. Because of the partial order evaluation, symbol 
table construction for a set of files automatically occurs in 
parallel, which helps when processing a large system. We 
have done this for C, C++, Java, JOVIAL, and COBOL. 
The Java version runs parsing and symbol table construc-
tion in parallel as it processes source files. 

Typically a domain-specific API is constructed on top 
of the symbol table machinery with facilities for looking up 
an identifier in a context (e.g., lookup the identifier in this 
tree node) and for updating the symbol table. This supports 
carrying out program transformations. 

Remarkably, pure rewrite transformation systems like 
TAMPR, TXL and XT try to avoid providing symbol table 
support. This forces their users into coding transforms to 
implement lookups, which is extremely inefficient at best, 
and clumsy to code and maintain at worst. They succeed in 
theory because rewrites are Post systems and therefore Tur-
ing capable; but in practice, nobody wants to program a 
Turing machine. Pure strategies aren’ t necessarily good 
engineering strategies. 

 0 

f oo:  i nt  
bar :  r eal  - > char  
baz:  namespace  

- 1 
0 

+1 

 
 

Figure 3: Symbol Space with Parent links 



  

  

 

 

4.6. Transforms and source rewrite rules 
Program transforms are generally described as source-

to-source rewrite rules. In theory, however, transforms are 
simply functions from program representations to program 
representations. 

DMS offers both views in practical forms and the tool 
engineer mixes and matches as convenient. One often finds 
procedural transforms using source transforms as support, 
and source transforms using procedures (often attribute 
evaluators) to check complex applicability conditions and 
generate right-hand-sides.  

Extensive but straightforward APIs are provided to al-
low direct procedural manipulation directly of the hyper-
graph, or more conveniently, of the abstract syntax trees 
using PARLANSE code. Most compiler infrastructures 
stop at this point. So do many program manipulation tools 
such as OpenC++ [20]. However, this forces the tool engi-
neer to become intimately familiar with the microscopic 
details of the tree representation, which is a burden for lan-
guages the size of C++ and for new languages whose struc-
ture is still evolving. It also means the transform rules can-
not be inspected by anybody but the authors. 

DMS offers source-to-source rewrite rules stated in the 
domain notation of interest. A typical rewrite rule ab-
stractly has the following form: 
 LHS → RHS  if  condition 
where both LHS (“ left hand side” ) and RHS (“right hand 
side” ) represent source language patterns with variables to 
represent arbitrarily long well formed language substrings. 
The if condition is an optional phrase referring to the vari-
ables in the LHS pattern. These rules are interpreted as, 
“when a program part matches the LHS, replace it by the 
RHS, if condition is true” . The condition may be imple-
mented as some additional matching constraints, or a call 
on some decision procedure coded in PARLANSE. 

Real transformation systems add more syntax to this 
simple scheme to allow specification of more details about 
the patterns. For DMS, an example C source code rewrite 
to convert an assignment into an auto-increment is shown 
in Figure 4; its effect is demonstrated in Figure 5. This rule 
is written in DMS’s Rule Specification Language. The do-
main phrase tells the transform tool to interpret following 
rule text inside quotes as being C syntax with escapes for 
meta-variables such as \v.   (We have taken slight liberties 
with the transforms to simplify their presentation). The 
DMS parsing machinery provides pattern-parsing capabili-

ties derived automatically from the parser-description for 
the domain, and converts such phrases into pattern trees. 

Finally, reasoning is based on mathematical systems in-
volving algebraic formula rewriting. DMS provides a tree-
rewriting system capable of handling associative and com-
mutative laws, thus providing a basis for rationale genera-
tion and capture. The rewriting engine does double duty as 
the basis for the tree-to-tree rewriting implementation of 
the program transforms. 

Typically a transformation system will have a large 
number of rules, and a large number of possible places in a 
program to apply them. It is beyond the scope of this paper 
to describe how the transformation system chooses which 
rules and where to apply them. 

4.7. Prettyprinting 
Having transformed a parse tree to obtain an improved 

tree, or having synthesized a new tree, it is eventually nec-
essary to convert it back to a text representation. 

DMS provides a pretty-printing facility, based on the 
notion of constructing and composing text boxes. Associ-
ated with each grammar rule is a specification of how to 
regenerate text for a tree node representing the rule non-
terminal in terms of box operations applied to text boxes 
produced for children’s tree nodes. Box operations include: 

• Primitive Boxes are produced by procedures defined 
for terminals, with many defaulting to built-in DMS 
primitives. These typically handle reconstruction of 
keywords, text for numbers shaped by the format in-
formation stored with the AST node, etc. Custom 
procedures can produce interesting results, such as 
substituting nonsense identifiers for actuals (giving 
code obfuscators) or HTML hyperlinks to source po-
sitions of identifier declarations  (producing hyper-
linked cross reference documents). 

• H( …)  Horizontal Concatenation. Assembles two text 
rectangles into a larger rectangle by left-right 
juxtaposition.  

• V( …)  Vertical Concatenation: Top/bottom box jux-
taposition. 

• I ( …)  Indent. Adds whitespace on the left of a box. 
• i f  t hen el se endi f  conditionals, to allow 

multiple dynamically-selectable prettyprinting styles 
to coexist. 

Prettyprinting rules are written using grammar terms. The 
grammar rule and corresponding prettyprinter rule: 

i f  = ‘ i f ’  expr essi on ‘ t hen’  st mt s ‘ end’ ;  
  <<Pr et t yPr i nt er >>:   {  
    V( H( ‘ i f ’ , expr essi on, ’ t hen’ ) ,   
      I ( st mt s) , ’ end’ ) ;  }  

def aul t  domai n C.  
r ul e aut o_i nc( v: l val ue) :  
  s t at ement - >st at ement  = 
  “ \ v  = \ v+1; ”  r ewr i t es t o “ \ v++; ”  
  i f  no_si de_ef f ect s( v) .  
 

Figure 4: A DMS rewrite rule 

before: ( * Z) [ a>>2] =( * Z) [ a>>2] +1;  
after:  ( * Z) [ a>>2] ++;  
 

Figure 5: Result of Applying Transform 



  

  

 

 

are sufficient for DMS to both parse and regenerate a nicely 
indented if-then-endif block. Comments attached to AST 
nodes are automatically reinserted at the appropriate place, 
with indentation matching the current indent-distance. 

The DMS prettyprinter can operate in “prettyprinting”  
mode or “ fidelity”  mode. In prettyprinting mode, it honors 
the supplied prettyprinting rules. In fidelity mode, it repro-
duces the spacing implied by the source position found 
attached to each tree node; if the source position is null, it 
falls back on prettyprinting rules. This allows the pretty-
printer to reproduce familiar program text where transforms 
have not been used, and to produce readable text where 
transforms have introduced new code. 

Prettyprinters are implemented as a special case of at-
tribute evaluation in which the internal state of the pretty 
printer is passed around the tree. 

5. Applications of DMS to software evolution 
The present DMS has been successfully used for a 

number of commercial tasks: 
• Generation of domain tools. A good test for the 

DMS infrastructure has been using DMS to imple-
ment much of DMS. Domain-specific languages for 
lexing, grammars, prettyprinting, attribute evalua-
tion, and program transformations are all imple-
mented using DMS. Further DMS subsystems are 
expected to use DMS aggressively for  the concep-
tual clarity and performance one can get from speci-
fying and applying complex implementation trans-
forms, thus increasing the scale on which DMS can 
operate. 

• Automated detection of code clones, in Java, C, and 
COBOL, on systems of 500K SLOC to 2.5M SLOC 
[8]. For C and COBOL, transformations have been 
applied to remove clones. We are presently working 
with a commercial customer to evaluate the use of 
clone detection as a source of domain concepts in 
large scale Java applications. 

• Simplification and removal of C/C++ preprocessor 
directives based on partial evaluation of preproces-
sor conditionals [18]. 

• Code generation of factory controller programs from 
factory process specifications. These programs are in 
experimental use in US automobile factories. DMS’s 
algebraic rewriting facility enabled high degrees of 
optimization of the thousands of large Boolean equa-
tions typically generated. 

• Implementation of production test coverage and pro-
filing tools for several dialects of C, C++, Java and 
COBOL [2]. These tools have been used on software 
systems with 4000 files. 

• Synthesis of compact, extremely fast Java parsers for 
specific XML DTDs. 

• Translation of large-scale real-time JOVIAL source 

code programs for 16 bit minicomputers to 32 bit C-
based programs. An existing flight application of 
370K SLOC has been automatically translated, pre-
serving code, comments, and macros, and is pres-
ently undergoing ground-system tests. 

Ongoing research work using DMS includes: 
• Restructuring of Web sites 
• Restructuring a custom distributed C++ system with 

6000 components to change the component architec-
ture to be compatible with CORBA. 

• Pushing model-driven aspects into the corresponding 
modeled C++ code. 

Scalability as a driving concern during DMS design has 
been a principal contributor to DMS’s ability to carry out 
most of these tasks. This scale capability has in turn made 
DMS commercially effective, providing fuel for further 
development. 

6. Where to next? 
We are still a long way from being able to carry out 

complex analyses on large systems. Most of what is needed 
here is the basic flow analysis infrastructure long used by 
optimizing compilers. There is active work at SD to im-
plement such generic infrastructure. 

Working with real systems requires a number of domain 
languages be pre-defined for use. Among others we pres-
ently have Java, C, C++ and COBOL85 well in hand. Other 
real languages require someone to provide their definition; 
as a practical matter, we do these as commercial opportuni-
ties arise. One dismaying aspect is the number of dialects 
of such languages. While there are standards for the main-
stream languages, no vendor actually implements that stan-
dard exactly, and the syntactic and semantic differences 
require additional attention (DMS provides a “dialect”  con-
figuration management scheme to help cope with this). 
Non-mainstream languages are much worse in this regard; 
often there are at best untrustworthy language definitions 
and worse still there tend to be more dialects because of the 
absence of standards. 

Having succeeded with building basic infrastructure, 
the major tasks ahead to enable Design Maintenance are: 

• Defining a number of interesting performance speci-
fication languages as domains. We have done prom-
ising internal experimentation using algebras. But 
just like the number of “ functionality” -specifying 
languages, the number of performance specification 
languages is expected to be large, and there is not a 
lot of experience in writing these down. Quality Of 
Service (QoS) is just one example class. 

• Defining large libraries of optimization and imple-
mentation knowledge as source-to-source transforms 
where practical, and as procedurally implemented 
transforms otherwise. These libraries provide poten-
tial transformational capability. 



  

  

 

 

• Implementing a transformational “strategy”  subsys-
tem, to control transformation rewriting according to 
performance specifications 

• Capturing the transformation steps and their depen-
dences. This is relatively straightforward for source-
to-source rewrites because they can be directly in-
spected. This is harder for procedural transforma-
tions, because their effect is opaque; we expect to 
annotate these to alleviate this problem. 

• Providing facilities for displaying and modifying the 
transformational strategy and derivation steps. 

A major issue which we have not explored is how to 
manage teams of engineers, all trying to inspect/modify 
such designs, for multiple configurations. This will require 
long-term transactions applied to designs, in which 
“atomic”  updates to significant parts of a design may take 
long periods of analysis and operator interaction time. 

7. Conclusion 
DMS is both a grand vision and attempt to validate that 

vision, and a practical tool for carrying out large-scale 
software analysis, modification, and enhancement. The 
DMS vision dictates how the implementation must evolve, 
and Semantic Designs is pursuing the implementation of 
the long-term vision.  

The present DMS has taken some 50 person-years of ef-
fort over 8 elapsed years to build. We expect that 
implementing the remainder of the vision will take an equal 
amount of effort. This is not a small-scale research project!  
However, we strongly believe that the only way to achieve 
large-scale system evolution capabilities is to build tools 
something like DMS, and there is no avoiding the vast ef-
fort it takes to put the necessary infrastructure in place. 

We remark that this kind of infrastructure is necessary 
if automated software engineering research is to spend its 
energy on research rather than reinventing poor versions of 
pieces of such a tool. Big Software Engineering needs to 
act like big Physics in terms of infrastructure. 
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