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ABSTRACT
Conventional software engineering tends to focus on a
small part of the software life cycle: the design and
implementation of a product.  The bulk of the lifetime cost
is in the maintenance phase, where one must live with the
product previously developed.  Presently, we have little
theory and fewer tools to help us manage the maintenance
activity.  We contend that a fundamental cause of the
difficulty is the failure to preserve design information.
This results from an over preoccupation with the synthesis
and maintenance of code.  We offer an alternative
paradigm:
• make the design the central focus of the construction

process—get code as a byproduct;
• make the design the central focus of the maintenance

process—preserve revised designs and get code as a
byproduct.

A transformational scheme for accomplishing this is
presented.  We call it the Design Maintenance System.
The programming roles change radically from coding
instances for ill-defined specifications to specifiers of
functionality and (compiler-like) implementation methods.
Specification and implementation method debugging
would then become prominent activities.  The design
scheme and change management procedures are illustrated
with a simple data processing application.  We sketch an
ongoing implementation.

Keywords: Design, Maintenance, Transformation System,
Domain Engineering, Automation

INTRODUCTION
The average lifetime of software is about 10 years,
according to a study [TAM92] of 95 systems drawn from a
variety of application domains.  Consequently, is hardly
surprising that most of the lifecycle costs for software
occur during the so-called maintenance phase [GRA87],
since its duration dwarfs the development phase.

Incomplete or nonexistent system documentation was
ranked in the top four problems in software maintenance
according to a Delphi study run with senior software
maintenance managers [DEK92].  (The other top-ranked
technical problem was inadequate testing).  This is
consistent with the perception that maintainers face two
major obstacles: understanding the program to be
modified, and validating the modification while assuring
that the remainder of the program is not accidentally
affected.

It seems clear that better processes for producing and
maintaining system documentation (as well as testing) for
generated programs would reduce maintenance costs.
However, this approach relegates documentation to
secondary status.  As such, it is likely to get short shrift.
We recommend that the software development process
should treat the design as the major product, with the
implementation (code) being merely a useful byproduct.
Implementation decisions and their rationale are captured
as they are made, not after the fact.

There is considerable value in capturing designs, decisions
and their rationales even informally.  However, informal
designs are subject to wide interpretation.  This variability
limits their value.  Moreover, the burden of details to be
managed makes this so unappetizing that informal capture
just is not performed.  Thus, we are confronted by the
present state of affairs: design information simply is not
preserved.

So we turn our attention to formal development
methodologies.  This paper will briefly outline a vision for
a Design Maintenance System (DMS) [BAX92] that
transformationally constructs and records the design of
software.  We then sketch how the design may be
incrementally modified by the DMS to produce revised
versions of the software.  We must necessarily be brief;
details of the procedures are found in Baxter’s dissertation
[BAX90].
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Figure 1.  Design Maintenance System Concept

Our intention is to exhibit a system that maintains designs,
in an attempt to persuade the software engineering
community of the value of our point of view.  Commercial
tools may not yet be available, but paradigm shifts must
occur before such tools can be used effectively.

WHAT’S IN A DESIGN?
If we are to capture a design, we must know what it is that
we are capturing.  Most design notations can be
considered as projections of the completed artifact, under
which some chosen aspect of the artifact is displayed.
Examples include, call graphs (structure charts), data flow
diagrams, state machines, interface specifications, etc.
The design process then consists of choosing sets of
projections for which the designers believe that a final
artifact can be constructed, and acquiring construction
hints from those projections.  Questions about the artifact
are answered by inspecting the projections.

The flaw with this notion of design is the absence of
rationale; projections do not explain why the artifact
organized the way that it is.  Without such rationale, one
can hardly hope to explain the artifact.  Worse yet, how do
we decide what part of an artifact is worth preserving in
the face of some proposed change?

One way to capture a rationale is to understand how the
artifact was constructed, and why the construction works.

We turn to transformational implementation methods to
provide this information.  Such methods can allow us to
capture the design rationale as:

• A specification of the desired task, both
functionality and performance;

• A derivation of the implementation from the
specification, explaining the final program; and

• A justification of the derivation steps.

TRANSFORMATION SYSTEMS
Transformation systems convert abstract program
specifications into concrete programs by applying
semantics-preserving transforms to produce new
specifications [FEA86, PAR90].  Each system usually has a
large repertoire of available transforms, and can choose
which ones to use semi-automatically.  Compilers are
simply transformation systems with fixed specification
languages, predefined transform libraries and fully
automatic choice of transformations.

In general, transforms may be arbitrary procedures (such
as YACC, which transforms BNF specifications into
LALR parser code).  That is, transforms are functions
from specifications to specifications, t: S→S.  In this paper
we will show only examples in the subclass that can be
represented as string rewrites, although our ideas apply to
the general case.  Many transforms are familiar to readers
as optimizations, such as the eliminate-additive-identity
transform:

x + 0 → x

The italicized names are parameters of the transform, and
are consistently substituted where the transform is used.
When a transform is applied at a particular location in a
specification, we obtain a transformation of the
specification; the place where the transform (rewrite) has
been applied is called the locator.  The value of the
locator depends on the underlying representation of the
specification, e.g., a path for a tree.  We will use

@line-number:token number
for paragraph shaped specifications.  So the
transformation

eliminate-additive-identity@3:1
applied to the 3rd line, 1st token of the (nonsensical)
specification

1 do j = 1 to 10 1 do j = 1 to 10
2 s=s+0 2 s=s+0
3 p=p+0 3 p=p
4 end 4 end
changes that specification by binding x to p and rewriting
p+0 as p.
Some transforms change levels of abstraction by
implementing high-level concepts in terms of lower level
concepts.  The implement-sum transform does this by
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mapping the logical concept of a SUM over an array into
the loop that implements it:

1 sum(var,limit,vector) →
2 begin local s = 0, var
3 do var = 1 to limit
4 s = s + vector(var)
5 enddo
6 return s
7 end

A full specification has two conceptual parts: a functional
specification (what the desired program should do), and a
performance specification (how well it should do it).
Functional specifications may be written as abstract
programs, as input-output constraints, or in problem-
domain specific notations.  Performance specifications are
often stated in terms of desired target languages
(PROLOG or BASIC), speed (.5 sec response time per
transaction), complexity (O(N2)).  Transformations are
applied to the functional part only to achieve some
specified level of performance [BAX90].

A program specification may be very abstract or describe
a very complex system.  In this case, a large number of
transformations may need to be applied to implement the
specification at the desired level of performance.  Since
manually commanding a transformation system to apply
large numbers of transformations is impractical, many
transformation systems allow metaprograms to control the
selection and application of the transforms.  The primitive
operations in such languages apply transformations to
locations.  If a metaprogram cannot decide locally what to
do, then it may backtrack to try alternatives.  Such
metaprograms may be purely procedural [WIL83] or may
be planning-style languages [ALL90] with post conditions
describing effects in terms of performance specifications
[MCC87, BAX90].  The post condition style allows
methods, metaprogram components, to be selected
(achieved) non-procedurally according to performance
specifications.  Such methods also allow explicit statement
of required sequencing of transformation steps.  Consider
for example

name: lower-abstraction-level
post: abstractionlevel(spec)=low
action: foreach sum@locator in spec

do apply implement-sum@locator

The foreach operator implies that there is no particular
order to multiple applications of implement-sum.

The following method invokes lower-abstraction-level
non-procedurally.

name: implement-in-BASIC
post: targetlanguage(spec)=BASIC
action: achieve abstractionlevel(spec)=low

then call
implement-using-BASIC (spec)

The then operator requires that transformations that lower
the abstraction level be performed before any
transformations that implement any operations in BASIC.

Complex performance specifications must be achieved by
breaking them down into simpler performance
specifications over smaller regions (locales) of the
program.

CAPTURING A TRANFORMATIONAL
DESIGN
A design should provide a rationale for the construction of
an artifact.  Clearly, any rationale must include a
specification of the artifact.  (Many present software
designs do not include any usable specification.)
Theoretically, a specification is sufficient.  We should be
able to work forward from the specification to rediscover
the purpose of each part of the artifact.  In practice, we
wish to cache the connection between the specification
and the artifact, because we do not want to effectively
redesign it each time we need an explanation.  We
presume that either the programmer or the transformation
system worked hard:

• to discover which transforms to apply,
• to determine exactly where to apply them,
• to achieve the desired level of performance.

The explanation of a transformationally derived program
is straightforward: the derivation history, the sequence of
transformations applied to the functional specification,
explains the final program.  The choice of the individual
transformations is explained by the beneficial effect the
individual transformation has on achieving the
performance specification.  If we record how the overall
performance specification is broken into subspecifications
over smaller locales, we obtain a design history.  The
design history includes a derivation history—the complete
explanation of how the performance and functional
specifications are met.

Figure 4 shows an abstract design history.  The initial
functional specification, f0, was transformed by application
of transformations c1, c2, etc. until the final
implementation, fG was obtained.  The performance
specification, Grest, was recursively partitioned by
choosing methods (boxes) that achieve portions of the
individual performance levels; the sequencing constraints
one the order of method execution and transformation
application is also recorded.  Eventually, low-level
methods apply particular transformations.



DESIGN MODIFICATION
Such a design history provides a complete explanation of
the final artifact, fG.  It is possible to incrementally revise
the design history, driven by the desired change, to
produce a new design history.  Since the new design
history contains a derivation, the revised artifact is easily
extracted from the new design history.

Figure 4 also shows, in gray boxes, the various kinds of
changes ∆Type that can affect the final artifact.  In each
case, the desired change is made explicit in the form of a
delta.  Some changes affect the functionality of the
product.  Some changes affect the performance but not the
functionality.  The DMS model also handles changes to
the software engineering infrastructure caused by domain
engineering errors, such as errors in the library of
transforms or methods, or even changes in the definitions
of performance.  A separate change procedure for each
type of change is required, but all these procedures share
considerable commonality due to their need to revise the
design history.

Each change can cause complex ripples in the structure of
the design history.  We do not have space here to illustrate
most of the procedures, nor even space to illustrate how
the performance goal decomposition is updated.  We will
focus instead on showing how a functionality delta can be
used to revise just the derivation history portion.

The key to revising the derivation history is to take
advantage of the ability to commute  the order in which
the transformations were originally applied.  In essence,
we wish to preserve transformations when possible, and
remove transformations that are no longer useful,
inspecting the interaction between the functional delta and
any proposed transformation to guide our decision making
process.  We start the process with a functionality delta
applicable to the initial specification.

For each intermediate specification (including the initial
spec), we have a transformation leading to the next
intermediate specification, and a delta describing the
change required.  To determine if a transformation t can be
preserved in the face of a delta, we determine if

∆(t(spec))=t(∆‘(spec))

This essentially tells us that the implementation step
accomplished by the transformation is not affected by the
change we wish to make.  If there is no effect, the
transformation can be preserved and is copied to a new
derivation history.  The delta might change in form (but
not intent) because the implementation transform may
rearrange the specification somewhat, and consequently
the locator for the delta can change.  If the implementation
transform lowers the abstraction level, the delta may also

shift levels, to express the change at the lower level of
abstraction.

If the transformation and the delta interfere or, by
conservative assumption if we are unable to decide, then
we banish the transformation.  Banishment is
accomplished by commuting, if possible,  the offending
transformation with its immediate follower in the
derivation history.  If the offending transformation will not
commute with its follower, then the follower must be
dependent on the offender, and is banished by the same
method.

DMS walks down the derivation history, deciding whether
it must preserve or banish the implementation
transformation at each intermediate specification.  When a
transform is reached this cannot be preserved, and cannot
be banished because the rest of the transforms depend on
it, then no more transforms can be preserved, and DMS
stops the walk.  The already-preserved transformations
form a legitimate prefix of a complete derivation for the
revised specification.  DMS then switches over to a more
conventional transformation implementation style to
complete the new derivation, requiring possibly more
“design” to choose new transformations.  Of course, the
DMS can propose trying to use the remaining
transformations by analogy, or it may simply discard them.

The completed derivation history has the desired revised
program at the end, and can be revised again by the same
process for yet another delta.

AN EXAMPLE
The previous section sketched the abstract derivation
history revision scheme.  In this section, we sketch a
concrete software maintenance scenario, and show how
the DMS theory guides the derivation history revision
process.  Because of space constraints, we must
necessarily demonstrate a formal mechanism rather
informally, and we have consequently taken liberties with
the details and the notation.  Since our purpose is to
change the reader’s perspective about how maintenance
might be done, rather than give him the exact mechanisms,
we hope we are forgiven.

We start with an initial program that accumulates the total
price of a set of order records kept in a file, where each
order record contains an item quantity and a price.  To
keep the problem small, we omit other typical record
attributes such as item name.

In Figure 5, we see the abstract functional specification for
the original problem in the top left-hand box (circles in
Figure 4 appear as boxes in Figure 5).  To keep the
example simple, we leave out performance specifications
although the reader should see how they implicitly drive
the implementation.  Down the left-hand column of boxes



in the figure, we see a transformational derivation from the
abstract specification into a practical program in a BASIC-
like language.  Each box represents an intermediate
functional specification derived from the one above it;
each intermediate step has exactly the same functionality
as the one preceding it.  No conventional programmer
would implement the specification by going through these
individual steps.  Yet, they are necessary for a machine if
one needs to be able to explain exactly how the resulting
program implements the specification.  Each downward
arrow connecting boxes represents the application of a
single transformation.  Since we do not have room to write
the exact formal transforms, we have settled for simply
naming (t1, t2, ...).  We show in italics, the nature of the
transformation corresponding to the arrow immediately
above it at the top each box.  The individual
transformations are justified by the performance
enhancement each makes.  The box at the lower left is the
efficient final program that would be used in practice, and
is what the traditional maintenance programmer would see
as his starting point.

Now, a new need arises: our manager wishes to keep order
quantities in separate files from the price per item.  This is
reflected by the revised abstract functional specification in
the upper right box.  One way to handle such a change
request is to simply re-implement the program.  Starting
from the revised functional specification proceeding
through the derivation history down the right column of
boxes, the figure can be viewed as exactly that.  This
culminates in the changed program at the lower right.

However, we assumed that the discovery of
transformations used in the original implementation was
hard; we do not expect the discovery to be any easier in a
new implementation.  DMS shows how and when
transformations used in a prior implementation can be
reused in the new implementation, avoiding the discovery
costs.

The arrows in Figure 5 crossing from left to right show
how formal deltas tie the original and new derivation
histories together (Figure 3).  Our manager provides the
delta  ∆0: order→price@1:17, i.e., change the order in
line 1, token 17 of the specification to price.  The DMS
determines that t1 can be reused as t1’, because t1 does
not affect anything related to the order@1:17.  However,

the delta must change to reflect the “movement” of the
code caused by implementing the loop, giving ∆1.
Similarly, t2  and t3 can be reused, changing the locators
on the delta, giving ∆2 and ∆3 respectively.  Transform t3’
has not really changed; our liberties have caused us to
write t3’ with the variable part bound to the entity @6:7.
(price)

Now, ∆3 conflicts with t5, and since the purpose of t4 is to
enable t5 (information captured in the design history but
not shown here), then both t4 and t5 , and their dependent,
t7 cannot be preserved.  The DMS effectively rearranges
the order of the original derivation history to delay the
application of the failing transformations until last.  This
does not affect the original implementation, but moves t6
and t8 upward (not shown).  A nonlinear representation of
the derivation history should be used to avoid actually
commuting the failed transformations with their followers.
Transformations t6 and t8 can be preserved as t4’ and t5’,
leaving ∆3 alone and producing ∆4, respectively.  Finally,
DMS operates as a conventional transformation system to
generate t6’ and t7’, ultimately deriving the final
maintained program in the lower right box.

The traditional maintainer does not have access to all of
this information.  He must start with the program in the
lower left, and using some informal description of the
change from his manager, somehow decide to produce the
program in the lower right.  While that may look easy for
this small example, in practice it is very hard because of
the scale of the code.  The missing information, made
explicit in this diagram, gives some indication why this is
such a hard task, and why tools like DMS should enhance
the productivity of the maintenance programmer.

REVERSE ENGINEERING
It is a grim fact that the typical organization desiring to
make change has only has the system code, with possibly
some informal, inaccurate documentation and some
understanding of the code distributed across the
maintainers.  Consequently, the typical organization could
not carry out our method for maintenance by design
modification directly.  Worse yet, since the paradigm calls
for a program formally derived from a specification, and
the conventional program was constructed by informal
means, it is not clear that a design history can be
constructed by any means.

Reverse engineering is one means to recover lost design
information.  Program understanding methods [NING],
[RIC90], [QUILICI] represent one approach by which
reverse engineering may be accomplished.  Such methods
use a library of program clichés, and match the clichés
against the code.  Where matches occur, the cliché
abstraction becomes a plausible explanation for the code.

∆0 order→price@1:17
∆1 order→price@3:12
∆2 order→price@6:7
∆3 order→price@6:11,7:7
∆4 order→price@5:11,6:7

Figure 3: Functional ∆s for Figure 5



It is assumed that with sufficient clichés, a complete
(possibly overlapped) tiling of the code can be obtained—
consider each cliché to be a tile covering some portion of
the code—thereby, providing a complete description of
the code.  There are a number of flaws to this approach:

1. There is an assumption that one can get a complete set
of widely acceptable clichés.  We subscribe to the
notion that there are a large number of problem
domains, and that clichés are needed for each.

2. There is the potential of huge computational demands
if one attempts to tile a large system at once.  Present
cliché recognition research is attempting to
understand the scaling issues for just 10,000 lines of
code and a small number of clichés [QUILICI]

3. A complete tiling of the code only raises the
abstraction level somewhat.  For a large system, it
would seem that one should tile the tiles repeatedly to
get to the highest level of abstraction possible.

4. The purpose of Reverse Engineering (RE) is generally
to aid informal understanding of the code (not
mechanical modification).  RE usually results in the
production of informal documents under the implicit
assumption that the code will be constant (often by
virtue of being thrown away).

5. Since code maintenance always changes the code, the
RE activity must be repeated for each maintenance
event (aggravating problem 2).  No knowledge is
accumulated in a directly tool-reusable form.  Yet, the
one luxury we have with maintenance is the long
period of time over which related activities recur.

6. Implemented code has all kinds of optimizations that
entangle the implementation of abstractions, which
disables recognition of clichés.  As an example, the
file-data-access abstraction in the data processing
program code can only be found once, although the
specification indicates two separate data accesses.

One approach for obtaining a design history is to
generalize cliché recognition in a way that solves these
problems.  The key observation is that every cliché is a
<abstraction, code template> pair, which can be treated
as a transformation rule.  We can use the power of a
transformation engine to recognize clichés and abstract
them.  In essence, we are analyzing the code by
synthesizing a plausible explanation of it as a derivation
from a plausible specification.

It is not necessary to recover the entire design to make
changes.  One need only recover the part that will be
impacted by the change.  Further, it is not necessary to
maximally raise the level of abstraction at the change site;
one merely needs to raise it enough so the maintainer gets
advantage over doing the task manually.  The change itself

and the informal understand of the software maintainers
can be used to focus the recovery activity to the crucial
part of the design.

We have applied the reverse-engineering method by hand
to assembly code in an operating system, to recover the
semaphore abstraction it implemented.  The final
specification is the domain-specific term, P(x: semaphore)
[DIJKSTRA].  The derivation history is the set of
transformations that map the abstraction into the highly
optimized assembly code.  The flavor of this is easily
obtained by considering the final code in Figure 5, and
discovering the transformations bottom up.

SUPPORTING TECHNOLOGY
There are two challenges to implementing the DMS
vision.  First one must have sufficient integrated
infrastructure to carry out the steps.  Second, it must scale
reasonably well.  Required infrastructure includes the
following.

A means for representing the program to be maintained.
A hyper-graph substrate is used to encode language-
specific graph representations.  For procedural languages
under DMS, we will be using advanced compiler
representations [CYT91] enabling data and control flow
analysis, with extensions that encode memory access and
synchronization conditions.  This aids cliché recognition
[RIC90] and allows more powerful transforms than
abstract-syntax tree representations.

A graph rewrite engine to apply individual
transformations to the program representation enhanced
with the ability to record, view and revise design histories.

Tools to manage a database of notations, abstractions, and
transforms that might be used in the application.  The
application domain language to which they apply
categorizes these.

Reverse-engineering tools, which use the rewrite engine to
recognize clichés taken from domains, and propose them
to a maintainer, or allow unrecognized code fragments to
be added to a domain as an instance of a domain
abstraction.

A domain-notation driven structure editor to allow
maintainers to inspect and point at portions of partially
derived applications in the appropriate domain notation.

SCALE
Scale management for DMS occurs at two levels: the size
of the application system, and the number of engineers
who maintain it.  DMS is arguably inappropriate for
applications having only several thousand lines or less;
maintenance programmers are able to handle these on an



individual basis.  DMS should be more effective for
systems with hundreds of thousands of lines, which are
common, but cannot be handled by individual maintainers.
Here the captured domain knowledge and the relationship
between the specification and the actual code should be of
great value to the maintainers.  Since such systems are
always evolving, DMS must support the simultaneous
efforts of large teams of maintainers.  Organizations with 5
million lines of code often have hundreds of software
engineers working on the system every day.  DMS
supports large-scale applications by several means.

DMS is implemented in a parallel processing language,
Parlanse, [Bax96] running on easily obtained
Windows/NT multiprocessor workstations.  Our
experience with transformational code synthesis systems
such as SINAPSE [KAN91], [BAX93], implemented on
symbolic manipulation systems (e.g., Mathematica)
showed that code synthesis alone sometimes required
hours to generate some 5,000 lines, well short of our target
ceiling of 10 million lines.  Symbolic manipulation is
expensive.  Parlanse provides the DMS implementers
with efficient support for compiler-managed forking and
synchronization of fine-grain parallel processes on
(symbolic) data structures, as well as software engineering
support such as modules and robust exception
management.  (We note that we expect to maintain the
DMS system, implemented in Parlanse, using DMS with a
Parlanse domain!).

DMS will not generate all 10 million lines of code when a
change is made, but it might have to inspect a significant
fraction of the 10 million transformations it has stored as
the design of that system.  We will use a nonlinear design
history representation to capture dependencies between
transform effects, rather than dependencies between
transformation states.

Since DMS revises histories, it is not a requirement that
DMS be able to automatically generate and apply
transformations by itself.  It should be sufficient that
maintainers choose the transformations one by one; re-
implementation repair efforts should be small.  However,
DMS will have a built-in implementation of a
programmable Transformation Control Language (TCL),
to provide some automation.

We are implementing DMS as a client-server architecture
in which the program design database will be held on a
server, and the DMS interface will run on maintainer’s
workstations.  An individual maintainer will implicitly
lock the part of the design history he may be changing.
On large systems, this should be a small portion of the
design base, and multiple maintainers should be able to
work with little interference.

Large application suites are never coded in a single

language.  The DMS notion of domain and domain
networks will allow DMS to handle multi-language
applications.

DOMAINS
The abstractions and notations useful for characterizing an
application problem are often poorly expressed in the
actual application program run on the computer.  DMS
will store and use multiple domains [NEI89] to specify and
implement a single application at its various levels of
abstraction.  Such domains include but are not limited to
target languages such as “C”, Entity-Relationship
diagrams, and graphical languages, as required for the
application at hand.  Each DMS domain has several parts:

External Form string or graph view suitable for user
Internal Form representation suitable for DMS
Semantics meaning of the Internal Form
Parser converts External to Internal Form
Unparser converts Internal Form to External
Optimizations transforms within a domain
Refinements transforms between domains
Analyzers how to analyze in the domain

This database is the repository of reusable knowledge for
this domain.  It is collected by explicit domain engineering
episodes, and augmented by repeated reverse engineering
activities during the maintenance process.  DMS provides
a Domain-Definition Domain in which other domains are
defined.

NEW SOFTWARE ENGINEERING ROLES
If we have design capture and modification tools the tasks
of the software engineer changes.  In present practice, few
software engineers specify; most spend their time
designing algorithms, coding, and chasing bugs.  With
DMS, we see two classes of effort: Domain analysis and
engineering versus Application analysis and engineering.

The Domain Analyst defines problem areas, formal
notations describing problems, and the notation semantics.
The Domain Engineer determines how one domain can be
implemented in terms of existing domains already known
to the system.  The Application Analyst operates
traditionally, determining the specific problem a customer
needs solved, but unconventionally produces a
specification in one or more domain notations established
by the Domain Engineer.  The Application Analyst is also
the source of maintenance deltas related to functionality
and performance of the individual product.  Finally, the
Application Engineer guides the DMS in the
implementation of the specification, or those parts that
must be re-implemented, but he does not program in the
usual sense.



RELATED WORK
Wile [WIL83] proposed that transformational
metaprograms, not code, be the major software product.
[ARA86, WAT88]  both describe an approach for porting
software by recovering a plausible derivation leading to
specification, and then re-implementing the specification,
but the derivation is lost.  The Programmer’s Apprentice
[RIC90] system recognized code idioms, converted them
to abstractions by an inverse transformation process, and
allowed a programmer to change the abstract program.
Based on a model of transformational maintenance by
reverse engineering [WAR89], a system for modifying
COBOL programs has been implemented.  Capture and
incremental reuse of informal design plans is being
pursued by [Jacq94] whose work may lead to a practical
tool useful for handling conventional programs.

CONCLUSION
We have shown a scheme for capturing the design of
transformationally synthesized code.  Given the design,
incremental changes can be installed by use of mechanical
procedures and some additional transformational
synthesis.  Such capabilities should decrease the cost of
maintenance, and therefore significantly lower the cost of
software.  This payoff strongly suggests the value of
treating design as the primary product of the software
process, rather than code.

Semantic Designs is funded by National Institute of
Standards and Technology (NIST), Advanced Technology
Program (ATP) under the Component-Based Software
Initiative to build a scaleable prototype DMS system.  We
expect to have demonstrable capabilities in early 1998.
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Figure 4: A Transformational Design Rationale
for an Implementation in terms of a Specification and applied Transformations



s=0 t3: implement order@6:7  as file
do i=1 to filelength(”order”)/size(order(1))

chnl1=allocchannel();open #chnl1,”order”
position chnl1,size(order(1))*i+offset(quantity)
read #chnl1,qty; close #chnl1
chnl2=allocchannel();open #chnl2,”order”
position #chnl2,size(order(1))*i+offset(cost)
read #chnl2,cst; close #chnl2; release(chnl2)
s=s+qty*cst

end do
return s

s=0 t3’: implement price@6:7 as file
do i=1 to filelength(”order”)/size(order(1))

chnl1=allocchannel();open #chnl1,”order”
position #chnl1,size(order(1))*i+offset(quantity)
read #chnl1,qty; close #chnl1; release(chnl1)
chnl2=allocchannel();open #chnl2,”price”
position #chnl2,size(price(1))*i+offset(cost)
read #chnl2,cst; close #chnl2; release(chnl2)
s=s+qty*cst

end do
return s

s=0 t2’: implement order@2:8,3:5 as file
do i=1 to filelength(”order”)/size(order(1))

chnl1=allocchannel();open #chnl1,”order”
position #chnl1,size(order(1))*i+offset(quantity)
read #chnl1,qty; close #chnl1; release(chnl1)
s=s+qty*price(i).cost

end do
return s

s=0 t2: implement order@2:8,3:5 as file
do i=1 to filelength(”order”)/size(order(1))

chnl1=allocchannel();open #chnl1,”order”
position #chnl1,size(order(1))*i+offset(quantity)
read #chnl1,qty; close #chnl;1 release(chnl1)
s=s+qty*order(i).cost

end do
return s

s=0 t4’: move open/close chnl1 outside loop
chnl1=allocchannel();open #chnl,”order”
do i=1 to filelength(”order”)/size(order(1))

position #chnl1,size(order(1))*i+offset(quantity)
read #chnl1,qty
chnl2=allocchannel();open #chnl2,”price”
position #chnl2,size(price(1))*i+offset(cost)
read #chnl2,cst; close #chnl2; release(chnl)
s=s+qty*cst

end do;
close #chnl1; release(chnl1);
return s

t4: reuse alloc to chnl1 for chnl2
s=0 t5: delete inefficient close/open pair
do i=1 to fileength(”order”)/size(order(1))

chnl1=allocchannel();open #chnl1,”order”
position chnl1,size(order(1))*i+offset(quantity)
read #chnl1,qty
position #chnl1,size(order(1))*i+offset(cost)
read #chnl1,cst; close #chnl1; release(chnl1)
s=s+qty*cst

end do

s=0 t7: use fact: quantity adjacent to cost
chnl=allocchannel();open #chnl1,”order”
do i=1 to filelength(”order”)/size(order(1))

position chnl1,size(order(1))*i+offset(quantity)
read #chnl1,qty,cst; s=s+qty*cst

end do; close #chnl1; release(chnl)
return s

s=0 t8: use fact: chnl1 records adjacent
chnl1=allocchannel();open #chnl1,”order”
do i=1 to filelength(”order”)/size(order(1))

read #chnl1,qty,cst; s=s+qty*cst
end do; close #chnl1; release(chnl1)
return s

s=0  t6’, t7’: move open, use chnl2 records adjacent
chnl1=allocchannel();open #chnl1,”order”
chnl2=allocchannel();open #chnl2,”price”
do i=1 to filelength(”order”)/size(order(1))

read #chnl,1qty
read #chnl2,cst
s=s+qty*cst

end do
close #chnl1; release(chnl1);close #chnl2; release(chnl)
return s

s=0 t1: implement sum
do i=1 to length(order)

s=s+order(i).quantity*order(i).cost
end do
return s

s=0 t1’: implement sum
do i=1 to length(order)

s=s+order(i).quantity*price(i).cost
end do
return s

s=0 t5’: use fact: chnl1 records adjacent
chnl1=allocchannel();open #chnl,”order”
do i=1 to filelength(”order”)/size(order(1))

read #chnl1,qty
chnl2=allocchannel();open #chnl2,”price”
position #chnl2,size(price(1))*i+offset(cost)
read #chnl2,cst; close #chnl2; release(chnl)
s=s+qty*cst

end do;
close #chnl1; release(chnl1);
return s

s=0 t6: move open/close chn1l outside loop
chnl1=allocchannel();open #chnl1,”order”
do i=1 to filelength(”order”)/size(order(1))

position chnl1,size(order(1))*i+offset(quantity)
read #chnl1,qty
position #chnl1,size(order(1))*i+offset(cost)
read #chnl1,cst; s=s+qty*cst

end do; close #chnl1; release(chnl1)
return s

sum(i,length(order),order(i).quantity*order(i).cost) sum(i,length(order),order(i).quantity*price(i).cost)
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Figure 5: Preserving implementation steps using ∆s as guidance
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