
1

Using Transformation Systems
 for Software Maintenance and Reengineering

Ira D. Baxter
Semantic Designs, Inc.

idbaxter@semdesigns.com

Abstract

Software maintenance costs dominate software
engineering costs, partly because most such engineering is
done manually. Program Transformation tools leverage an
engineer-provided base of "transforms" (a kind of
generative reuse of programming knowledge), to automate
analysis, modification, and generation of software,
enhancing productivity and quality over conventional
methods. This tutorial provides a complete overview of
Program Transformation, from theory to implementation to
application. Several real transformation systems will be
examined, with application examples including automated
detection and removal of duplicate code from large
systems, and the potential for semi-automated refactoring
of large object frameworks. The tutorial progresses from
introductory to intermediate, but all the necessary
background will be provided, so attendees need only basic
software engineering knowledge and motivating experience
modifying software.

1 Transformation Systems

Transformation systems are software tools that
“rewrite” constellations of concepts (characters, strings,
trees, graphs) into alternative constellations. (The basic
technology idea goes back to Emil Post’s 1943 model of
computation as rewriting strings, but the foundations are
found in mathematics). This rewriting capability has long
considered [11] as a key enabler supporting

• Analysis of software

• Modification of software

• Generation of software

Rewriting provides the basis for automation. Applying
previously coded rewriting rules provides significant
additional leverage by reusing hard-won problem concepts,
analysis and implementation methods.

Transformation system technology has matured to the
point where these activities are practical on large scale,
production software systems, and offer large productivity
and quality increments to engineering organizations using
them [1]. Practical tools are now beginning to appear in the
marketplace. We predict these tools will cause a paradigm
shift for software engineering from ad hoc design and
manual coding of programs and tests, to specification of

problems and solutions, and encoding implementation
knowledge. The ability to make massive, reliable changes
to software will fundamentally change the way
organizations design and deliver software systems

This new class of tools will become a part of every
software engineer's toolkit over the next decade, just like
editors, compilers, linkers and debuggers. The tutorial will
provide the researcher and the practitioner alike with the
necessary background to understand how these tools work,
how to determine the capabilities and limitations of a
particular system, and how to compare and therefore
rationally choose among different transformation systems.

2 Technology Foundations

Practical transformation systems are extremely generalized
compilers. They must:

• Parse a source language or specification
• Build a computer-internal-representation
• Carry out analyses for well-formedness, and/or

desired/undesired properties of the spec based on
local information and information flows

• Carry out modifications to the representation
according to previous analyses, to either
• Enhance the program (speed, space, quality)
• Translate to another language
• Abstract from low level concepts

• Regenerate program source text from updated
internal models.

In addition, for use in practical software engineering, such
tools must scale well in many axes:

• Size of the program specification (thousands of
files, millions of lines)

• Number of and variety of languages they can
process, both in general and in the same session

• Computational horsepower to enable analysis and
modification of large systems

• Ability to interact with multiple engineers over
long periods of time

• Sophistication of analysis/change methods
• Ability to acquire new knowledge (rewrites,

analysis and modification methods)[4]

The tutorial will cover these technology foundations, both
in concept and in mechanism, and show how such
components play together to achieve the overall effects. A
conceptual vocabulary for clearly identifying

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

transformation system components will be provided and act
as basis of comparison of a number of practical systems.
The author’s scalable DMS Reengineering Toolkit will be
used to illustrate a number of the foundations (sophisticated
parsing/prettyprinting, multiple domain languages [10],
parallel computational support. etc), and how they are
integrated.

3. Applications of Transformation Systems

The value of transformation systems lies in their agility to
serve an amazing variety of software engineering purposes.
The tutorial will generally show how these tools can be
harnessed for:

• Reverse Engineering (structure and concept
extraction)

• Arbitrary Analyses
• Reengineering (reshaping/reorganizing code)[8]
• Document extraction
• Software Porting (new languages/platforms) [13]
• System Optimization (space, parallelization,…)[7]
• Code generation from specifications
• Field size overflow repair (Y2K, SSNs, …)
• Applying Design Patterns automatically [12]

The tutorial will examine several applications of special
interest in detail:

• Code generation from Finite State Specifications
and/or XML DTDs

• Clone Detection and Removal, which finds and
removes typically 10% of the source code volume
from any system of modest scale[3]

• Refactoring, (reengineering object-oriented
systems), and how automated tools are required to
realize the promises of the refactoring/XP [5]
community

Finally, we will examine a theory of software change[2]
specification and automated insertion/management being
implement with DMS.

4. The Presenter

Ira Baxter has been building system software since
1969. He acquired his Ph.D. with emphasis on software
engineering and reuse from the University of California at
Irvine in 1990. He has worked with a number
transformation systems starting with Draco [10] in 1975,
and is presently the architect of the DMS, and designer of
the PARLANSE parallel programming language in which
DMS is implemented.

Dr. Baxter has been invited speaker at SSR’99, coChair
of the 1997 International Conference on Software Reuse,
and Program coChair of the Working Conference on
Reverse Engineering, and has been a PC member of the
International Conference on Software Maintenance for a
number of years.

References
[1] http://www.program-transformation.org

[2] I. Baxter and C. Pidgeon, “Software Change Through Design
Maintenance”,. International Conference on Software
Maintenance, IEEE Press, 1997.

[3] I. Baxter, et. al, “Clone Detection Using Abstract Syntax
Trees”, International Conference on Software Maintenance, IEEE
Press, 1998.

[4] M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef,
“Generation of components for software renovation factories from
context-free grammars”, Science of Computer Programming,
36(2-3):209-266, 2000

[5] M. Fowler, Refactoring, Addison-Wesley March 2000

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995

[7] N Jones, “An introduction to partial evaluation”, ACM
Computing Surveys, 28(3):480-503, September 1996.

[8] L. Markosian, P. Newcomb, R. Brand, S. Burson, T. and
Kitzmiller, “Using and Enabling Technology to Reengineer
Legacy Systems”, Communications of the ACM, 37 (5) pp. 58--
71. 1994

[10] J. Neighbors, “The Draco Approach to Constructing Software
from Components”, IEEE Transactions on Software Engineering
10(5):564-574, 1984.

[11] H. Partsch, Specification and Transformation of Programs,
Springer-Verlag, 1990

[12] L. Tokuda, D. Batory, “Automated Software Evolution via
Design Pattern Transformations”, TR-95-06 CS Dept., University
of Texas at Austin, 1995

[13] R. C. Waters. “Program translation via abstraction and
reimplementation”, IEEE Transactions on Software Engineering,
14(8):1207-1228, August 1988.

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

