Previous CloneSet | Next CloneSet | Back to Main Report |
Clone Mass | Clones in CloneSet | Parameter Count | Clone Similarity | Syntax Category [Sequence Length] |
---|---|---|---|---|
20 | 2 | 1 | 0.998 | stmt_list[6] |
Clone Abstraction | Parameter Bindings |
Clone Instance (Click to see clone) | Line Count | Source Line | Source File |
---|---|---|---|
1 | 21 | 74 | Bio/NeuralNetwork/BackPropagation/Layer.py |
2 | 20 | 164 | Bio/NeuralNetwork/BackPropagation/Layer.py |
| ||||
# set up the weights self.weights = { } for own_node in self.nodes: for other_node in self._next_layer.nodes: self.weights[(own_node,other_node)] = random.randrange( -2.0,2.0) # set up the weight changes self.weight_changes = { } for own_node in self.nodes: for other_node in self._next_layer.nodes: self.weight_changes[(own_node,other_node)] = 0.0 # set up the calculated values for each node -- these will # actually just be set from inputs into the network. self.values = { } for node in self.nodes: # set the bias node -- always has a value of 1 if node==0: self.values[0] = 1 else: self.values[node] = 0 |
| ||||
# set up the weights self.weights = { } for own_node in self.nodes: for other_node in self._next_layer.nodes: self.weights[(own_node,other_node)] = random.randrange( -2.0,2.0) # set up the weight changes self.weight_changes = { } for own_node in self.nodes: for other_node in self._next_layer.nodes: self.weight_changes[(own_node,other_node)] = 0.0 # set up the calculated values for each node self.values = { } for node in self.nodes: # bias node if node==0: self.values[node] = 1 else: self.values[node] = 0 |
| |||
# set up the weights self.weights = { } for own_node in self.nodes: for other_node in self._next_layer.nodes: self.weights[(own_node,other_node)] = random.randrange( -2.0,2.0) # set up the weight changes self.weight_changes = { } for own_node in self.nodes: for other_node in self._next_layer.nodes: self.weight_changes[(own_node,other_node)] = 0.0 # set up the calculated values for each node # set up the calculated values for each node -- these will # actually just be set from inputs into the network. self.values = { } for node in self.nodes: # bias node # set the bias node -- always has a value of 1 if node==0: self.values[ [[#variable78abc4c0]]] = 1 else: self.values[node] = 0 |
CloneAbstraction |
Parameter Index | Clone Instance | Parameter Name | Value |
---|---|---|---|
1 | 1 | [[#78abc4c0]] | node |
1 | 2 | [[#78abc4c0]] | 0 |